

- → Flow switches for insertion installation
- → Piston type flow switches
- → Magnetic inductive flow sensors
- → Turbine flow sensors
- → Positive displacement flow sensors
- → Oval gear flow meters



FLOW MEASUREMENT

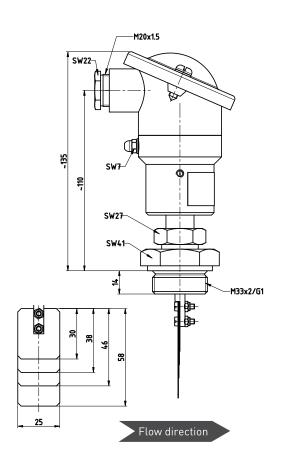
Flow switches for insertion installation

Paddles interchangeable, for marine applications

Technical data		
Switching function	Change of	over contact
Pressure rating (Test pressure)	Max. 6 ba	ar (10 bar)
	or max. ´	10 bar (15 bar)
Temperatures		
Medium	Max. 100	°C
Ambient	Max. 85 °	°C
Electrical data		
Max. contact rating	24 VDC,	5 A resistive load 4 A inductive load
	60 VDC,	1 A resistive load 0.5 A inductive load
	250 VAC,	10 A resistive load 10 A inductive load
Degree of protection EN 60529	IP54	
Protection class EN 60730-1	Class I	
Approvals		
	^	1

Germanischer Lloyd, Type Approval Certificate No. 89824-94HH and 94970-10HH

Advantages


- Germanischer Lloyd Type Approval
- Suitable for water, oil, etc.
- Insertion installation into pipes or pipe tees DN 25...DN 50 or bigger
- Easy installation and alignment due to screw in connection
- Four paddles in different sizes included, selection in accordance to the pipe size
- Set point adjustment by paddle size selection and by adjustment screw
- · Micro switch with high contact rating
- Robust, vibration-resistant up to 4 g

Size of pipe tee	Paddle to select**	Set point ranges [m³/h]*						
		Increasing flow ON	Decreasing flow OFF					
DN 25	25 x 30 mm	1.01.25	1.051.2					
DN 32	25 x 38 mm	1.72.05	1.61.95					
DN 40	25 x 46 mm	2.22.55	2.12.45					
DN 50	25 x 58 mm	3.253.85	3.153.75					

^{*} Water, 20 °C, horizontal pipe, tolerance ± 15 %

^{**} Higher set points selectable by use of smaller paddle sizes Set points for bigger pipe sizes on request

Materials in contact with fluid							
Body, process connection	Brass 2.0401						
Bellow system	Stainless steel 1.4571						
Paddles	Stainless steel 1.4310						
Flat gasket	HD 300						
0-ring	NBR						

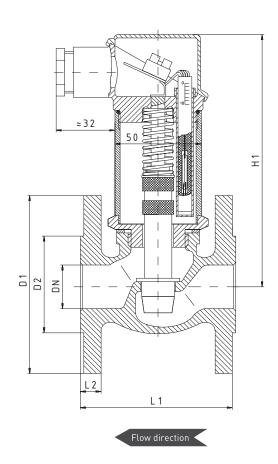
Order code	IMPA code	Pressure rating	Process connection
VH500NI3451R41	75 25 38	6 bar	G1
VH500NM3451M41	75 25 44	6 bar	M33 x 2
VH500RI3451R41		10 bar	G1
VH500RM3451M41		10 bar	M33 x 2

Piston type flow switches for marine applications

Series VM100

- Germanischer Lloyd Type Approval
- Inline installation, DN 15...DN 20 female threaded, DN 25...DN 80 flanged
- Wide set point range
- Various fitting positions
- High repeatability
- Reed contact output
- Special version for oil available (on request)

Technical data	
Pressure rating	PN 16
Medium temperature	Max. 100 °C
Change over contact	24 V DC; 230 V AC
max. contact rating	0,5 A DC; 1 A AC
	25 W; 36 VA
Cable gland	M24 x 1,5 acc.to DIN 89280
Degree of protection EN 60529	IP44
Hysteresis	< 15 % of set point range
Accuracy	< 2 % of set point range
Approvals	



Germanischer Lloyd, Type Approval Certificate No. 54627-71HH

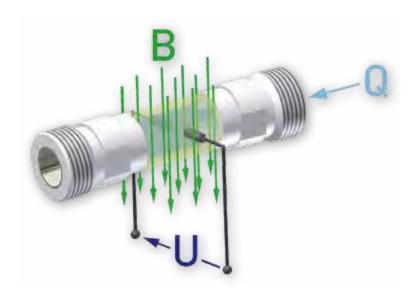
Order cod	е								
Pipe size	Process	ocess Set point range [l/min]*			[mm]			SIKA-Code	IMPA-Code
	connection	Decreasing flow OFF	D1	D2	L1	L2	H1		
DN 15	G1/2	213			81		136	VM1151351G3R	75 25 51
DN 20	G3/4	528			80		136	VM1201351G4R	75 25 52
DN 25	Flange	1575	115	68	90	12	151	VM1251351G5R	75 25 53
DN 32	acc. to	20125	140	78	95	13	161	VM1321351G6R	75 25 54
DN 40	EN 1092-1	30200	150	88	110	14	165	VM1401351G7R	75 25 55
DN 50		85280	165	102	125	14	165	VM1501351G8R	75 25 56
DN 65		65410	185	122	150	15	179	VM1651351G9R	75 25 57
DN 80		150550	200	138	170	16	185	VM1801351G0R	75 25 58

^{*} Water, 20 °C

Materials in contact with fluid						
Pipe section	Gun metal RG5					
Body	Brass					
Piston	PPN (Hostalen)					
Magnet	Hard ferrite					

Magnetic inductive flow sensors

Principle of operation


The smart flow sensors of the **induQ** $^{\circ}$ series operate according to the principle of induction: The measuring pipe is in a magnetic field (**B**). If an electrically conductive medium, with the flow (**Q**) to be measured, flows through the measuring pipe and thereby at a right-angle to the magnetic field, a voltage (**U**) is induced in the medium. This voltage is proportional to the average flow velocity and is picked up by two electrodes.

Regarding flow proportional output signals two versions are available depending on the model:

- Frequency output signal
- · Analogue and frequency output signal

The pulse rate can be configured at the factory or on-site.

The **induQ**° sensors enable the flow measurement/volume flow measurement or dosing of electrically conductive liquids without any moving parts. They are the ideal flow sensors when accuracy and reliability are a must.

Advantages induQ®

- No moving parts
- No mechanical wear*
- Free pipe cross-section → no additional pressure drop
- Maintenance-free
- Fast response (< 100 ms)
- Minimum inlet section requirements
- st For aqueous media without solid fractions

Magnetic inductive flow sensors

Series indu[®] VMM

Advantages

- Rapid signal processing with a 16-bit microcontroller
- Password protection
- Self-test
- Language selection: German, English
- Low-flow suppression
- Empty pipe detection
- Easy menu-driven operation and programming (e.g. measuring range, pulse rate)
 by the user by means of a two-line alphanumeric display
- Delivery inlouding works calibration certificate

Outputs

- Analogue output (0)4...20 mA
- Frequency or Impulse output
- 2 alarm / status outputs

Displays

- Flow rate, several total flows
- Flow velocity
- Relative flow rate [%]
- Mass and mass flow (enter density)

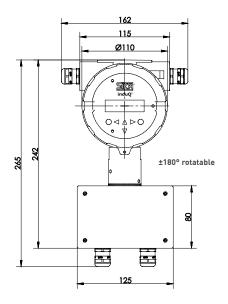
Units

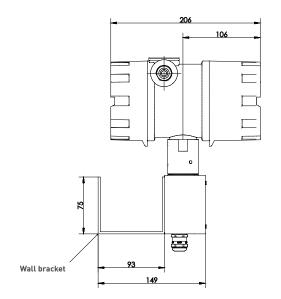
 Divers, e.g. m³/h, l/s, USG/min, kg/h (density programmed)

Туре	VMM15	VMM25	VMM32	VMM40	VMM50	VMM65	VMM80	VMM100	VMM125	VMM150	VMM200	
Characteristics	71-11-110	VI-11-12-0	VI-11-102	VI-11-140	V1-11-100	VI-11-100	V1-11-100	71-11-1100	VI-II-1120	VI-II-1100	V1-11-12-00	
Nominal diameter	DN 15	DN 25	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200	
Process connection				1		2-1, JIS B22			_	DIV 100	DIN 200	
	T tarige c	.01111001101		dance wit				ANSIBIO				
Flow range	0 10											
→ Flow velocity [m/s]	010	0 45 /	To 000	0 /50	0 50 /	0 440 /	1000	000 7	0 (/4 5	0 /0/4	0 4400	
→ Volumetric flow [m³/h]	06.3	017.6	028.9	045.2	070.6	0119.4	0180.9	0282.7	0441.7	0636.1	01130	
Accuracy*	0.50											
v = 110 m/s		.5 % of reading .4 % of reading ±1 mm/s										
v < 1 m/s	±0.4 % 0	it reading	±1 mm/s									
additionally	0.05.0/	10.17										
Frequency output		per 10 K										
Analogue output	±0.1 % p	er 10 K										
Repeatability	±0.15 %	at at										
Response time	< 100 m:	S**										
Signal output	> 0 m/s											
starting from												
Medium /	1	nd other c	onductive	e liquids /								
min. conductivity	50 μS/cr	n										
of medium												
Medium temperature												
→ Hard rubber	090 °C											
→ PTFE		°C at 40										
		°C at 25										
		°C at 16										
→ Process connections		°C (steel										
→ Process connections	Min20	°C (stain	less steel	J								
Ambient temperature												
→ Hard rubber	080 °C											
→ PTFE	-20100											
→ Process connections		°C (steel	,									
→ Process connections		°C (stain	less steel	J								
→ Display	-2050											
Storage and	-2060	°C										
transport temperature			T	T							1	
Pressure rating	DN1 /0	DN1 /0	DN1 (0	DN (0	DN 10	D114/4444	DNI 47	DNIA	DNI 4 /	DNI 4 /	DN 40	
→ EN1092-1	PN 40	PN 40	PN 40	PN 40	PN 40	PN 16****	PN 16	PN 16	PN 16	PN 16	PN 10	
						PN 40	PN 40	PN 40	PN 40	PN 40	PN 16	
											PN 25	
											PN 40	
→ JIS B2220 10K	9.8 bar	(5)										
→ ANSI B16.5 150 RF		(Process										
		(Process	,	on, stainle	ess steel)							
Display		-line, bac										
Operation		nenu-driv	en									
Degree of protection	IP67											
EN 60529												

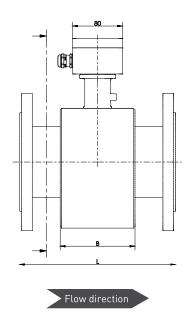
^{*} Reference conditions: Media temperature 10...30 °C; Ambient temperature 20...30 °C; warm-up period 30 min.; straight pipe lengths; inlet 5 x DN, outlet 2 x DN, regularly centered and earthed

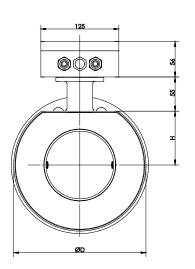
^{**} Depending on the electronics settings

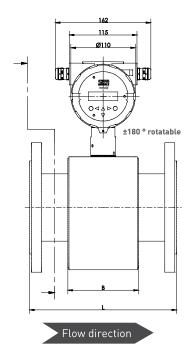

^{***} The readability of the LCD display is restricted below 0 $^{\circ}\text{C}$

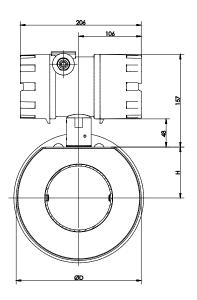

^{**** 8} bolt flanges

1000		VMM32	VMM40	VMM50	VMM65	VMM80	VMM100	VMM125	VMM150	VMM200		
1000		equency s	signal sele									
1000		equency s	signal sele									
	1000			ectable								
	1000	1										
≤ 1000 P		1000	1000	1000	1000	1000	1000	100	100	100		
< 1000 P												
	1000 Pulses/s											
≥ 0.1 ms	(max. 2 s	a), adjusta	ıble									
Squarew	ave signa	al										
03	010	010	010	020	050	050	070	0100	0150	0250		
0 4 1 1 1												
Squarew	ave signa	al 										
		1	I	I	I	I		I	I			
03	010	010	010	020	050	050	070	0100	0150	0250		
0 20 m	L 2	l 'OmAsel	l lectable									
	,	, , , , ,										
	-nt											
· omiani												
2												
	nler											
		eflow hac	kflow MI	N flow rat	- MΔX fl	nw rate a	larm (adiu	stahlel				
				TV ItoW I'd		- Tate, c	- (aaja		,			
O _{max} . 30	v, Imax. O	Σιιι Λ , ι ma	ax. 1,0 vv									
blo class	L M20 v. 1	5										
			211-									
		FIU 70), DU) UU 17Z									
)	Squarew 03 020 m 21.6 mA 600 Ω Permane 2 Optocou Status of U _{max} : 30 able gland 0 VAC (-1	03 010 020 mA / 4 2 21.6 mA 600 Ω Permanent 2 Optocoupler Status output: Pro Umax: 30 V; Imax: 60 able gland M20 x 1 0 VAC (-15 % / +10 115 VAC (-15 % / +10 11936 VDC	Squarewave signal 03 010 0	Squarewave signal 03	Squarewave signal 03 010 010 010 010 020 020 mA / 4 20 mA, selectable 21.6 mA 600 Ω Permanent 2 Optocoupler Status output: Preflow, backflow, MIN flow rate U _{max} : 30 V; I _{max} : 60 mA; P _{max} : 1,8 W able gland M20 x 1.5 0 VAC (-15 % / +10 %), 50/60 Hz 115 VAC (-15 % / +10 %), 50/60 Hz 11936 VDC	Squarewave signal 03 010 010 010 010 020 020 mA / 4 20 mA, selectable 21.6 mA 600 Ω Permanent 2 Optocoupler Status output: Preflow, backflow, MIN flow rate, MAX flow of the selectable of th	Squarewave signal 03	Squarewave signal 03	Squarewave signal 03	Squarewave signal 03		




Separate type (Display)




Separate type (Sensor)

Compact type

Dimensions [m	Dimensions [mm]										
Process connec	ess connection Installation length L							Weight EN 1092-1 [kg]*			
EN 1092-1	ANSI B16.5	Hard	PT	FE	Tolerance	В	D	Н	Sensor	Compact	
JIS B2220 10K		rubber	Without	With						type	
			protection rings	protection rings							
DN 15	1/2"	200	200	206	+0 / -3	80	130	53	5	8	
DN 25	1"	200	200	206	+0 / -3	80	130	53	6	9	
DN 32	11/4"	200	200	206	+0 / -3	80	130	53	7	10	
DN 40	11/2"	200	200	206	+0 / -3	80	130	53	7.5	10	
DN 50	2"	200	200	206	+0 / -3	80	140	57	9	12	
DN 65	21/2"	200	200	206	+0 / -3	80	155	63	10	13	
DN 80	3"	200	200	206	+0 / -3	80	170	70	13	16	
DN 100	4"	250	250	256	+0 / -3	120	210	86	15	18	
DN 125	5"	250	250	256	+0 / -3	120	240	98	19	22	
DN 150	6"	300	300	306	+0 / -3	120	285	117	23	26	
DN 200	8"	350	350	360	+0 / -3	200	350	143	36	39	

^{*} valid for DN 15...DN 50 (PN 40), DN 65...DN 150 (PN 16), DN 200 (PN 10)

Materials							
Not in contact with fluid							
Display housing	Casted aluminium						
Sensor housing	Steel						
Measuring pipe	Stainless steel						
Process connection	Steel 1.0460 or stainless steel 1.4404						
In contact with fluid							
Electrodes	Stainless steel 1.4571 or Hastelloy C276						
Measuring pipe lining	PTFE or Hard rubber						

Order code	Example → VMM32	A	1	0	1	0	KAMA	20
Nominal diameter								
DN 15 / ½"	VMM15							
DN 25 / 1"	VMM25							
DN 32 / 11/4"	VMM32							
DN 40 / 11/2"	VMM40							
DN 50 / 2"	VMM50							
DN 65 / 2½" DN 80 / 3"	VMM65 VMM80							
DN 100 / 4"	VMM1C							
DN 125 / 5"	VMMV3							
DN 150 / 6"	VMM3L							
DN 200 / 8"	VMM2C							
Process connection			1					
EN 1092-1 PN 10 starting from DN 200		А						
EN 1092-1 PN 16 starting from DN 65		В						
EN 1092-1 PN 25 starting from DN 200		С						
EN 1092-1 PN 40 starting from DN 15		D						
JIS B2220 10K		J						
ANSI B16.5 150 RF								
Material process connection				-				
Steel 1.0460 Stainless steel 1.4571			1					
Lining								
PTFE Hard rubber				0				
Material electrodes				ı				
Stainless steel 1.4571					1			
Hastelloy C276					2			
Earth electrode								
Without						0		
One						1		
Two						2		
Туре								
Compact type with display							KAMA	
Separate type with display							GAMA	
Power supply								
230 VAC, 50/60 Hz								20
115 VAC, 50/60 Hz								40
1936 VDC								30

Accessories

Earthing ring

An earthing ring is used for the electrical reference and earthing of the medium being measured. It is necessary if the pipes are not electrically conductive or lined (plastic or concrete pipes, etc.). The earthing ring must be connected to the provided earthing screw of the sensor. Retrofitting is possible. Material stainless steel 1.4571.

Sensor cable set

Sensor cable between sensor and display unit (separate design) consisting of magnetic power cable and electrode cable for configuration of M16 x 1.5 screw connection.

Pair of protection rings

Protection rings protect the inlet and outlet edges of the sensor against mechanical damage, in particular when abrasive media such as gravel, sand, etc. are concerned. At the same time, they also serve as earthing rings. The protection rings are firmly screwed to the sensor. Material stainless steel 1.4571.

Order example	VMMZEW	32	A	1
Туре				
Earthing ring	VMMZEW			
Protection rings (pair)	VMMZPR			
Nominal diameter				
DN 15 / 1/2"		15		
DN 25 / 1"		25		
DN 32 / 11/4"		32		
DN 40 / 11/2"		40		
DN 50 / 2"		50		
DN 65 / 2½"		65		
DN 80 / 3"		80		
DN 100 / 4"		1C		
DN 125 / 5"		V3		
DN 150 / 6"		3L		
DN 200 / 8"		2C		
Process connection				
EN 1092-1			Е	
JIS B2220 10K			J	
ANSI B16.5 150 RF			А	
Lining				
PTFE				0
Hard rubber				1

Sensor cable set - length of cable	Order code
5 m	VMMZSC000Z0005
10 m	VMMZSC000Z0010

Turbine flow sensors

Series VTR

Turbine flow sensors of the series VTR are used to measure different low viscosity media such as water and coolants. They are long-lasting and provide continuously reliable measuring results because they are made of stainless steel and equipped with a tungsten carbide supported turbine wheel.

During the design of these turbine flow sensors, versatile customisation options for special applications were in the focus of attention. Versions with flanged or threaded connection, a wide range of different sizes and application-specific sensors allow the adaption to a variety of applications. Pick-up sensors are available for example as versions with or without auxiliary energy, for high temperatures or for use with the local display TD32500.

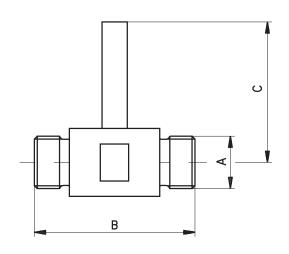
To maintain accurate readings, the characteristic K-factor – the number of measured pulses per litre – is determined for each device in the factory and specified on the type plate. In addition, a five point calibration report for each sensor can be created on request.

Advantages

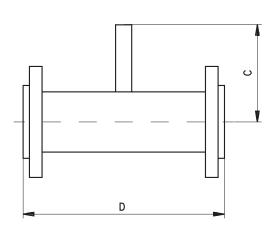
- Works calibration certificate 5 point calibration
- Wide measuring ranges (1.8...45090 l/min)
- Always reliable measuring results due to high measuring accuracy, regardless of the mounting position
- High quality tungsten carbide bearings with low wear and long durability
- Robust stainless steel body, even for difficult applications

Turbine flow sensors

Series VTR



Accuracy	±0.5 % of reading		
Repeatability	±0.05 % of reading		
Response time	< 50 ms up to DN 40		
	> 50 ms up to DN 300		
Process connections Flange: DIN, ANSI, others on request			
	thread (up to DN 50): BSP ISO 228 or NPT thread		
Pressure drop	280 mbar at 100 % measurement range (density 1, viscosity 1 mm²/s)		
Minimum pressure	2 x pressure drop of sensor		
Pressure rating	Threaded connection: 250 bar		
	Flanged connection: corresponding to flange specification		
Medium temperature Max. 150 °C			
All specified values apply to viscosities up to 5	cSt. Higher viscosities on request.		
Options			



Туре	Nominal diameter	Flow range		Dimensions			
	DN	[m³/h]	[l/min]	Α	B [mm]	C max [mm]	D [mm]
VTR1010	10	0.111.1	1.818.3	G1/2	64	150	127
VTR1015-S	15	0.222.2	3.736.7	G ³ / ₄	64	150	127
VTR1015	15	0.44	6.766.7	G ³ / ₄	64	150	127
VTR1020	20	0.88	13.3133	G ³ / ₄	83	150	140
VTR1025	25	1.616	26.7267	G 1	88	200	152
VTR1040	40	3.434	56.7567	G 11/2	114	200	178
VTR1050	50	6.868	1131133	G 2	132	200	197
VTR1075	80	13.5135	2252250			200	254
VTR1100	100	27270	4504500			300	356
VTR1150	150	55550	9179167			300	360
VTR1200	200	1101100	183318333			350	457
VTR1250	250	1901900	317331730			350	457
VTR1300	300	2702700	450945090			400	457

Thread connection DN 10...DN 50

Flange connection DN 10...DN 300

Materials	
Turbine body	Stainless steel ANSI 316
Flange	Stainless steel ANSI 316
Rotor	VTR1010 - VTR1020: Stainless steel (18 % Cr, 2 % Mo)
	VTR1025 - VTR1300: Stainless steel (20 % Cr, 2 % Mo)
Bearing support	Stainless steel ANSI 316
Rotor bearing	Tungsten carbide sleeve bearing

Order code		Example → VS	1071VA	ISP0	А3
Туре					
VTR thread connection male		VS			
Nominal size / flow range	Process connection				
DN 10 / 0.111.1 m³/h	male thread G½		1071VA		A3
DN 15 / 0.222.2 m³/h	male thread G¾		1572VA		A4
DN 15 / 0.44 m³/h	male thread G¾		1573VA		A4
DN 20 / 0.88 m³/h	male thread G¾		2074VA		A4
DN 25 / 1.616 m³/h	male thread G 1		2575VA		A5
DN 40 / 3.434 m³/h	male thread G 1½		4076VA		A7
DN 50 / 6.868 m³/h	male thread G 2		5077VA		A8
Sensor					
Inductive pick-up VISPP (inclu	ded in the scope of delivery)			ISP0	
Optional pick-up according to	table on the following page (separate order)			0000	

Order code	Example → VS	1071VA	ISP0	G	1
Туре					
VTR flange connection	VS				
Nominal size / flow range					
DN 10 / 0.111.1 m³/h		1071VA			
DN 15 / 0.222.2 m³/h		1572VA			
DN 15 / 0.44 m³/h		1573VA			
DN 20 / 0.88 m³/h		2074VA			
DN 25 / 1.616 m³/h		2575VA			
DN 40 / 3.434 m³/h		4076VA			
DN 50 / 6.868 m³/h		5077VA			
DN 80 / 13.5135 m³/h		7578VA			
DN 100 / 27270 m³/h		1H79VA			
DN 150 / 55550 m³/h		HF81VA			
DN 200 / 1101100 m³/h		2H82VA			
DN 250 / 1901900 m³/h		ZF83VA			
DN 300 / 2702700 m³/h		3H84VA			
Sensor					
Inductive pick-up VISPP (included in the scope of delivery)			ISP0		
Optional pick-up according to table on the following page (separate order)			0000		
Process connection					
DIN flange stainless steel				G	
ANSI flange stainless steel				-1	
PN 6 / #150					1
PN 16 / #300					2
PN 25 / #400					3
PN 40 / #600					4

Accessories for series VTR

Pick-ups

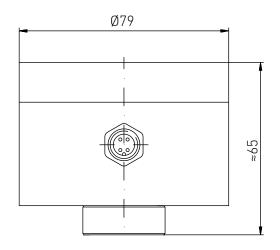
The local display TD32500 is ordered and configured separately. The specifications can be selected in the subchapter Accessories for series VTR.

Technical data						
Туре	VISPP Inexpensive, fitted as standard	VISPP-HT For high medium temperatures	VSAPPS* Square wave signal	VSAPPSHT* Square wave signal, for high medium temperatures	VSANTD For local display TD32500	
Output signal	Sinus wave	Sinus wave		quare wave NPN or PNP to choose So		
Measuring principle	Inductive	Inductive		Magnetically biased Hall effect sensor		
Temperature range	-20120 °C	-20230 °C**	-2085 °C	-20100 °C	-2085 °C	
Power supply			1030 VDC		Via TD32500	
Degree of protection EN 60529	IP54		IP67 IP		IP65	
Electrical connection	Amphenol plug con MS 10 SL 3102	nection	4-pin plug connection M12 x 1			
Cable socket	Inclusive		Accessory			
Material housing	Stainless steel ANSI 314	Stainless steel ANSI 316	Brass nickel-plated			

^{*} Adapter VT1140 sold separately ** Notice the max. medium temperature of measuring turbine [150 °C].

Connection cables	Length	Order code	
Connection cable for turbine flow sensor with cable	3 m	XVT2053	
socket M12 x 1 moulded lead, 4-pin, shielded,	5 m	XVT2009	
sheathing material PUR (T _{max} = 70 °C)	10 m	XVT2070	•
UL-approval			
4-pin cable socket M12 x 1 angle type unassembled		VT1331	

Local displays, series TD32500


Description

- Supplied fitted directly on SIKA turbine flow sensors, series VTR
- Display can be switched to:
 - → flow rate
 - → total flow (resettable)
 - → total flow (non resettable)
 - → optional temperature
- In addition bargraph 0...100 % to display flow rate, total flow (resettable) or optionally temperature
- Menu-driven programming via two light-reflex buttons
- Key lock for unintentional operation
- Robust stainless steel casing, with a closed glass window front
- Rotating case gives improved reading
- Language selection German, English or French
- Fixed connecting cable or plug connector M12 x 1

Technical data				
Signal input	Fequency signal from flow sensor 0.52000 Hz, pulse rate programmable			
Additional temperature input (optional)	Pt100 / 3-wire, measuring range -10150 °C			
Programming	Menu-driven with two light reflex buttons			
Display	2-line LC-display with 16 characters per line, character height: 5 mm			
Programmable units	l/min, l/h, m³/h, GPM (US), GPM (UK), l, m³, GAL (US), GA L(UK), °C,°F			
Power supply	1224 VDC			
Power supply to sensor	12 VDC			
Ambient temperature	-1060 °C			
Temperature of medium through the flow sensor	Depending on type of sensor, not exceeding -2090 °C			
Analogue output (optional)	(0)420 mA (max. resistance 800 Ω with 24 VDC) or 010 V, adjustable for flow rate, total flow (resettable) or optional temperature			
Alarm outputs (optional)	Two fast-switching PNP transistor open collector outputs, programmable for min- or max alarm, hysteresis programmable, allocation of flow rate, total flow (resettable) or optional temperature holding current or working current programmable			
Pulse output with frequency divider (optional)	PNP open collector, TTL-level, programmable divider-rate			
Casing	Circular stainless steel casing, Ø 80 mm, height 55 mm, 350° rotating			
Degree of protection EN 60529	IP65			
Electrical supply	PVC-connection cable, 2 m or plug connector M12 x 1			

Options

- Additional temperature display, input for resistance thermometer Pt100 / 3-wire
- Analogue output 0(4)... 20 mA or 0...10 V, freely adjustable, allocated to: flow rate, total flow (resettable) or optional temperature
- Two fast-switching alarm outputs, min or max allocation selective: flow rate, total flow (resettable) or optional temperature. A red LED clearly signals alarms
- Pulse output for flow rate, if required with frequency divider (pulse reduction)

The turbine flow sensor is ordered and configured separately. The specifications can be selected in the chapter Turbine flow sensors.

Order code	Example → ED325	6	01000	009	1	0
Туре						
TD32500	ED325					
Input						
Flow sensor		6				
Flow sensor and Pt100		7				
Outputs						
None			01000			
Analogue output			A1000			
Pulse + frequency divider			F1000			
Analogue + frequency divider			B1000			
Alarm output						
None				009		
Two, programmable				299		
Electrical connection						
2 m cable					1	
Plug M12 x 1					2	
Number of pins / leads						
Factory preset						[]

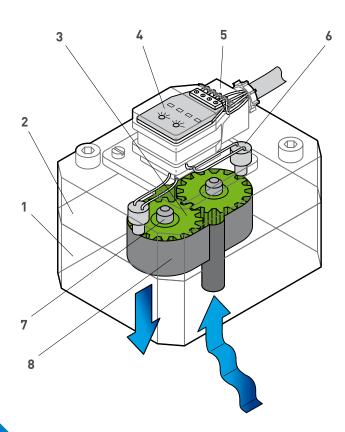
Positive displacement flow sensors

Gearwheel type flow sensors record volume flows of liquids with both high and changing viscosities. The high-precision sensors work according to the displacement principle. The high resolution combined with reliable measurement accuracy make the sensors especially useful for applications involving the measurement of small and very small volumes.

In principle, the measurement accuracy is increased for high viscosities. Conversely, the measurement accuracy is lower with a viscosity of less than 10 mm²/s. Due to their construction, gearwheel type flow sensors require a certain lubricity of the fluid beeing measured. Operation with non-lubricating media, e.g. water, is not possible.

Applications

- · Consumption measurement
- · Control of filling operations
- Dosage of oils and chemicals
- Flow measurement of paints and varnishes
- · Ratio control of polyol and isocyanate


Principle of operation

A very precisely adjusted gear pair within the casing forms the measuring element. The inflowing medium causes the gear pair to rotate. The rotary motion is scanned by contactless sensors. Since each individual tooth generates a pulse, this results in a very high resolution. Consequently, even the smallest volumes can be measured or dosed precisely.

The measurement unit contains two pick-offs that are circumferentially offset by ¼ of a tooth pitch to generate a 2 channel flow-proportional frequency signal. Suitable processing of the signal provides an greater resolution and the option to identify the flow direction.

The maximum pressure drop should not exceed 16 bar. This limits the measurement range of high viscosity media (see pressure drop diagrams). Basically, the measurement accuracy increases with increase in viscosity of the media.

- 1 Housing bottom
- 2 Housing cover
- **3** Gear wheels
- 4 Pre-amplifier
- 5 Connection plug
- 6 Pick-offs
- **7** Bearing
- 8 Measurement chamber

Overview of performance features of the VZGG / VZVA / VZAL

	VZGG / VZVA	VZAL		
Housing	Ductile iron or stainless steel	Aluminium		
Viscosity of medium 1100 000 mm²/s		14000 mm²/s (depending on the model)		
Temperature of medium -30120 °C (standard)		-1080 °C		
Measuring accuracy ±0.3 % of reading		±1 3 % of reading		
Sizes 8		4		
Process connection Via subplate with lateral female thread connection		Direct female thread		

Additional performance features of the VZGG / VZVA

- The measuring volume per pulse determines the size, e.g. 0.4 cm³/pulse for VZ 0.4...-S
- HT version for temperatures up to 150 °C with thermally insulated preamplifier (option)
- Intrinsically safe explosion-proof versions available in accordance with ATEX (max. medium temperature 80 °C)
- Variety of casing and sealing materials, meaning they can be universally used for different measurement media
- Standard process connection via connecting plates, so they can be replaced quickly without lengthy interruptions to the process
- Other bearings for special requirements on request

Additional performance features of the VZAL

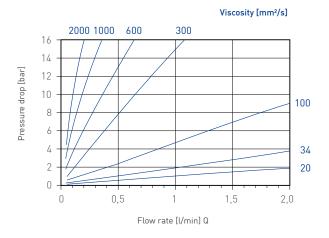
- Standard process connections
- Output signal: pulse signal

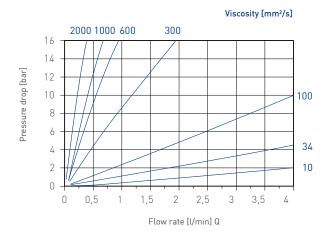
Positive displacement flow sensors

Series VZGG, VZVA

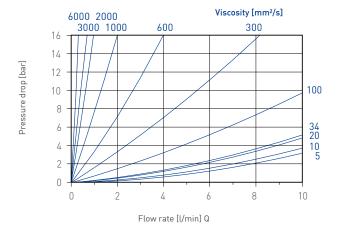
Туре	VZ0.025	VZ0.04	VZ0.1	VZ0.2	VZ0.4	VZ1	VZ3	VZ5
Size	0.025	0.04	0.1	0.2	0.4	1	3	5
Start of gear wheel rotation [l/min]	0.001	0.004	0.008	0.01	0.01	0.02	0.03	0.04
Measuring range* [l/min]	0.0082	0.024	0.048	0.1616	0.240	0.480	0.6160	1250
Geometric gear volume [cm³]	0.025	0.04	0.1	0.245	0.4	1.036	3	5.222
Measuring volume [ml/Pulse]	0.025	0.04	0.1	0.245	0.4	1.036	3	5.222
Resolution [Pulse/l]	40 000	25 000	10 000	4081.63	2500	965.25	333.33	191.5

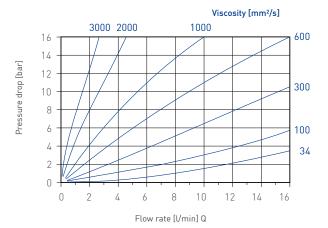
^{*} For media with high viscosity the measuring range is reduced.


The max. pressure drop shouldn't exceeded 16 bar (see pressure drop diagrams).

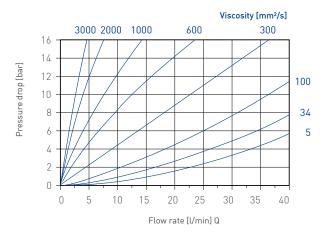

Technical data						
Measuring accuracy ±0.3 % of reading [21 mm²/s]						
Repeatability	< 0.1 % under sa	ime conditions				
Viscosity of medium	1100 000 mm²,	/s				
Pressure rating	→ VZ 0.025 to VZ 1max. 400 bar → VZ 3 to VZ 5max. 315 bar → Higher pressure rating on request					
 Medium temperature range (depends on sealing material) → Standard → Without preamplifier (for TD8250) → High temperature → Ex version 	FKM -15120 °C 060 °C -15150 °C -1580 °C	EPDM -30120 °C 060 °C -30130 °C -3080 °C				
Ambient temperature range (depends on sealing material)	FKM -1580 °C	FEP -3080 °C	EPDM -3080 °C			
Process connection	Via subplate with lateral female thread connection					
Power supply	1230 VDC / max. 90 mA					
Electrical connection	Via standard soc	Via standard socket				
Degree of protection EN 60529	IP65					
Output signal	2-channel, squarewave, pulse duty ratio 1:1, PNP					

Options	
For type	On request
VZVA	→ Direct Process connection

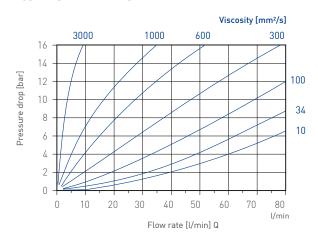

Typical pressure drop VZ0.025

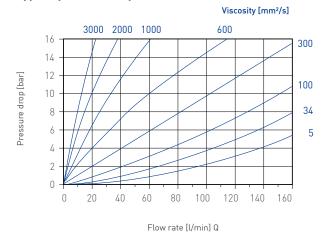

Typical pressure drop VZ0.04

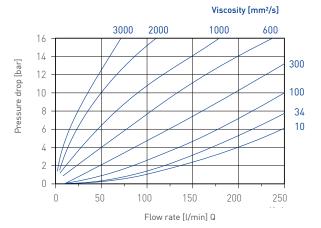
Typical pressure drop VZ0.1

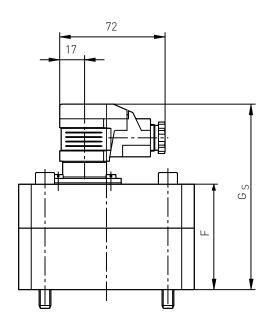


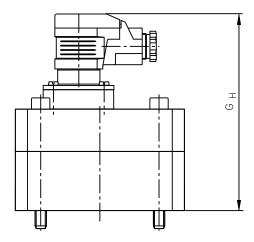
Typical pressure drop VZ0.2

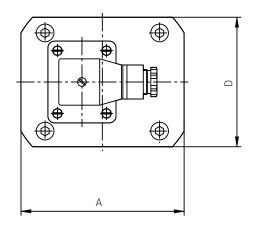



Typical pressure drop VZ0.4


Typical pressure drop VZ1

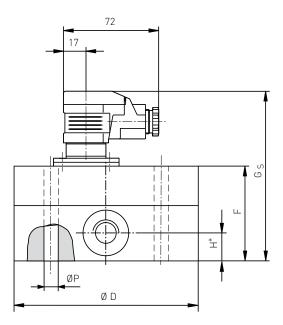

Typical pressure drop VZ3


Typical pressure drop VZ5

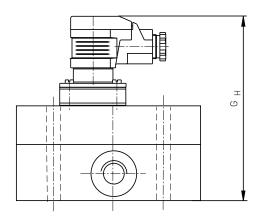

VZGG

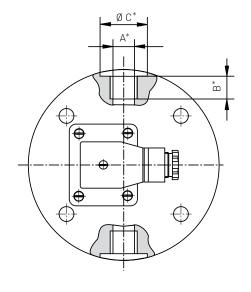
Standard version and Ex version

High temperature version



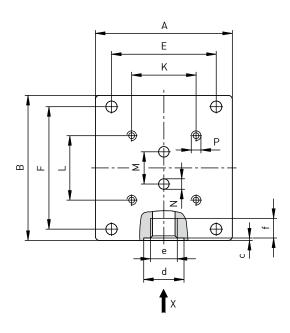
Material	
Housing	Ducitile iron EN-GJS-400-15
Gear wheels	Steel 1.7139
Bearings	Ball bearings
Seals	Standard: FKM
	Option: EPDM, FEP

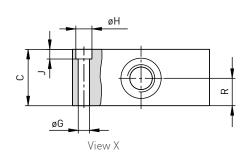

Туре	VZ0.025GG	VZ0.04GG	VZ0.1GG	VZ0.2GG	VZ0.4GG	VZ1GG	VZ3GG	VZ5GG
A [mm]	85	85	85	85	100	120	170	170
D [mm]	60	60	60	60	90	95	120	120
F [mm]	50	56	65	57	63	72	89	105
GS [mm]	101	107	116	108	114	123	140	156
GH [mm]	114	120	129	121	127	136	153	169
Weight [kg]	1.8	2	2.3	2	3.7	5.2	9	13


VZVA

Standard version and Ex version

High temperature version

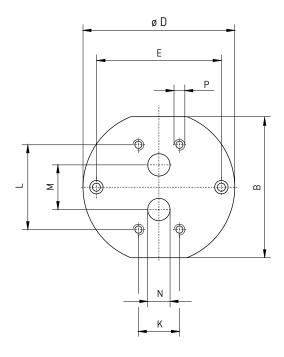

* For direct porcess connection

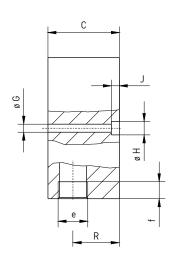

Material	
Housing	Stainless steel 1.4404
Gear wheels	Stainless steel 1.4462
Bearings	Ball bearings stainless steel
Seals	Standard: FKM
	Option: EPDM,FEP

Туре	VZ0.025VA	VZ0.04VA	VZ0.1VA	VZ0.2VA	VZ1VA	VZ3VA	VZ5VA
D [mm]	94	94	94	94	124	170	170
F [mm]	55	56	65	57	72	89	105
GS [mm]	106	107	116	108	123	140	156
GH [mm]	119	120	129	121	136	153	169
Weight [kg]	3	3	3	3.1	7	15.9	18.7
Direct process of	onnection						
A [mm]	G1/8	G1/4	G3/8	G3/8	G1/2	G 1	G 1
B [mm]	9	13	13	13	15	19	19
C [mm]	17	21	25	25	29	42	42
H [mm]	15	15	20	16	22	30	30

Subplates for VZGG

For type	VZ0.025GG / VZ0.04GG / VZ0.1GG / VZ0.2GG	VZ0.4GG	VZ1GG	VZ3GG / VZ5GG
A [mm]	85	100	100	160
B [mm]	90	110	120	165
C [mm]	35	37	37	80
c [mm]	0.7	0.7	0.7	1
d [mm]	25	29	29	42
E [mm]	65	86	80	140
е	G3/8	G1/2	G1/2	G 1
F [mm]	76	96	106	145
f [mm]	13	15	15	19
G [mm]	7	7	7	9
H [mm]	11	11	11	15
J [mm]	7	7	7	9
K [mm]	70	80	84	46
L [mm]	40	38	72	95
M [mm]	20	34	35	50
N [mm]	6.5	16	12	25
P [mm]	M 6/14t	M 8/18t	M 8/18t	M 12/24t
R [mm]	17	18.5	17.5	28
Weight [kg]	1.8	2.7	2.9	14
Material	Ductile iron EN-GJL-250	Ductile iron El	N-GJL-400-15	Ductile iron EN-GJL-250





Subplates for VZVA

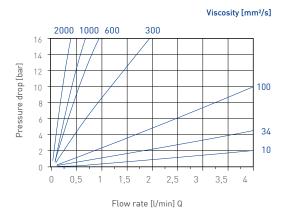
For type	VZ0.025VA / VZ0.04VA / VZ0.1VA / VZ0.2VA	VZ1VA	VZ3VA / VZ5VA
B [mm]	85	116	158
C [mm]	35	37	80
D [mm]	94	124	170
E [mm]	75	100	140
е	G3/8	G1/2	G1
f [mm]	13	15	19
G [mm]	7	9	9
H [mm]	11	15	15
J [mm]	7	9	9
K [mm]	70	84	46
L [mm]	40	72	95
M [mm]	20	35	50
N [mm]	6.5	12	25
P [mm]	M 6/14t	M 8/18t	M 12/24t
R [mm]	18	19.5	52
Weight [kg]	1.7	3.2	13.9
Material	Stainless steel 1.4404		

Order code		Example → VZ0025	GG	٧	3	2	1	005
Туре	Size							
VZ0.025	0.025	VZ0025]					
VZ0.04	0.04	VZ004						
VZ0.1	0.1	VZ010						
VZ0.2	0.2	VZ020						
VZ0.4	0.4 (only ductile iron)	VZ040						
VZ1	1	VZ100						
VZ3	3	VZ300						
VZ5	5	VZ500						
Material								
Ductile iron			GG					
Stainless steel			VA					
Seals				<u>'</u>				
FKM				V				
EPDM				Ε				
FEP				Р				
Power supply								
1230 VDC					3			
Process connect	ion							
Via subplates						2		
Direct (only for s	tainless steel)					1		
Preamplifier								
Integrated							-	
	ifier, for TD8250 (not for Ex-version)						K	
Isolated for high	temperature version (not for Ex-ver	rsion)					Ε	
Version								
Standard								00S
Ex-version								10S

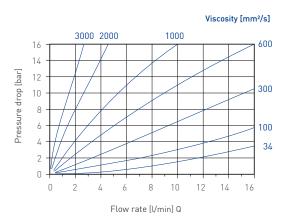
Order code	Example → AP004	GG	03805
Subplates appropriate to			
VZ0.025 / VZ0.04 / VZ0.1 / VZ0.2	AP004		0380S
VZ0.4 (only ductile iron)	AP040		0120S
VZ1	AP100		0120S
VZ3 / VZ5	AP500		1000S
Material			
Ductile iron		GG	
Stainless steel		VA	

Positive displacement flow sensors

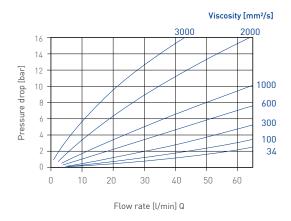
Series VZAL

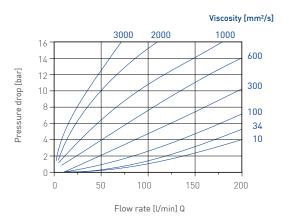


Technical data				
Туре	VZ 0.04AL	VZ0.2AL	VZ2AL	VZ5AL
Size	0.04	0.2	2	5
Measuring range*	0.024 l/min	0.1616 l/min	165 l/min	1200 l/min
Viscosity of medium	204000 mm²/s	13000 mm²/s	204000 mm²/s	204000 mm²/s
Measuring accuracy	±2 % of reading	±1 % of reading	±2.5 % of reading	±1 % of reading
Repeatability	Up to 0.5 % under same co	nditions		
Pressure rating	Max. 200 bar	Max. 160 bar	Max. 160 bar	Max. 80 bar
Pressure peaks	Max. 240 bar	Max. 200 bar	Max. 200 bar	Max. 100 bar
Medium temperature range	-1080 °C integrated prear 060 °C without preamplifi			
Thread connection	G1/4	G3/8	G3/4	G 1
Weight	0.5 kg	0.7 kg	1.9 kg	6 kg
Volume per pulse	0.04 cm ³	0.245 cm ³	2 cm ³	5.222 cm ³
Number of output channels	1	2	1	1
Output signal → Signal shape → Pulse rate → Resolution	Square wave, pulse signal, PNP, pulse duty ratio 1:1 ±15 % 25000 pulses/l 0.04 ml/pulse	Square wave, pulse signal, PNP, pulse duty ratio 1:1 ±15 % 4081.63 pulses/l 0.245 ml/pulse	Square wave, pulse signal, PNP, pulse duty ratio 1:1 ±15 % 500 pulses/l 2 ml/pulse	Square wave, pulse signal, PNP, pulse duty ratio 1:1 ±15 % 191.5 pulses/l 5.2 ml/pulse
Indication	Cable socket with one LED for pulse signal	Cable socket with two LED for pulse signal (two channels)	Cable socket with one LED for pulse signal	Cable socket with one LED for pulse signal
Electrical connection	Plug connector incl. cable s	socket		
Power supply	1230 V DC reverse polarit	y protection		
Power input	0.6 W short circuit proof	0.9 W short circuit proof	0.6 W short circuit proof	0.6 W short circuit proof
Degree of protection EN 60529	IP65			

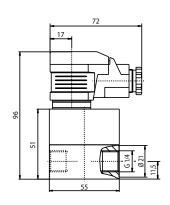

 $[\]ensuremath{^{*}}$ For media with high viscosity the measuring range is reduced.

The max. pressure drop shouldn't exceeded 16 bar (see pressure drop diagrams).

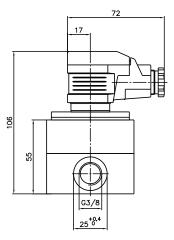

Typical pressure drop VZ0,04AL

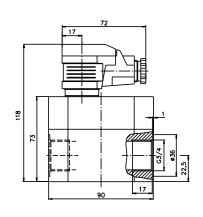

Typical pressure drop VZ0,2AL

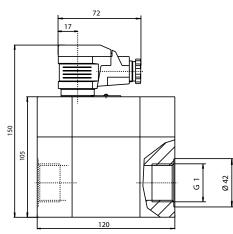
Typical pressure drop VZ2AL



Typical pressure drop VZ5AL




VZ0.04AL


VZ0.2AL

VZ2AL

VZ5AL

Material

Туре	VZ0.04AL	VZ0.2AL	VZ2AL	VZ5AL
Housing	Aluminium, gold-colour anodised	Aluminium, gold-colour anodised	Aluminium AIMgSi F30 (hard coated)	Aluminium AIMgSi F30 (hard coated)
Gear wheels	Stainless steel 1.4462	Steel 1.7139	Steel 1.7139	Steel 1.7139
Bearings	Ball bearings	Ball bearings stainless steel	Sleeve bearings (P10)	Ball bearings
Seals	FKM	FKM	FKM	FKM

Order code		Example → VZ004ALV31	IOOS
Туре	Size		
VZ0.04AL	0,04	VZ004ALV31	
VZ0.2AL	0,2	VZ020ALV31	
VZ2AL	2	VZ200ALV31	
VZ5AL	5	VZ500ALV31	
Preamplifier			
Integrated			100S
Without preamplifier (fo	r TD8250)		K00S

Accessories

Local displays, series TD8250

The local display TD8250 is simply fitted between the plug connector plug and the cable socket of VZGG, VZVA or VAL positive displacement flow sensors. It is programmable via two buttons which are located behind the front panel. It can be set to display either the actual flow rate or the total volume (counter function), as required. The TD8250 is available in three different output signal versions:

- Pulse output (2-channel, depending on flow sensor)
- Analogue output 0(4)...20 mA
- Two alarm contacts

It is also easy to retrofit onto existing flow sensors. To do this, merely remove the amplifier board from the cable socket.

Technical data	
Signal input	Pulse signal from flow sensor
Programming	Via 2 buttons,
	data retention on power off
Display	Four-digit LED display, red, 7.6 mm high
Power supply	1928 VDC, optional 1019 VDC
Current consumption	Max. 120 mA
Ambient temperature	060 °C
Storage temperature	-2585 °C
Output signals	Pulse output
	(2-channel, depending on flow sensor)
	or analogue output 0(4)20 mA
	or 2 alarm contacts max. 24 VDC / 1 A
Housing	Aluminium, 60 x 35 x 60 (W x H x D)
	without plug connector
Weight	Approx. 120 g
Degree of	IP65
protection EN 60529	
Electrical connection	Plug connector DIN EN 175301-803-A,
	4 pin

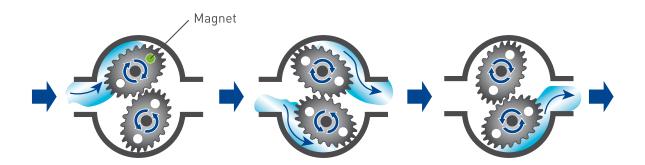
Order code	Example → ED825F	60
Outpout signals		
Pulse output	ED825F	
Analogue output 0(4)20 mA	ED825A	
Two alarm contacts	ED825R	
Power supply		
1928 VDC (standard)		60
1019 VDC (option)		50

Switch amplifier, series K-130

The switch amplifier K-130 serves as an interface between electrical signals of the hazardous areas to the safe areas.

The input signals of positive displacement flow sensors in in Ex-version are transmitted through transistor contacts. The input-, output- and power supply circuits are safe galvanic separated.

This unit is approved as associated apparatus.


Technical data	
Temperature ranges	
→ Ambient	-2560 °C
→ Storage	-2585 °C
Humidity	Max. 75 % RH
Housing	For assembly rail setup DIN EN 50022
Dimensions	114.5 mm x 22.5 mm x 99 mm (H x W x D)
Declaration of conformity	94/9/EG: CE 0158
Field of application	EX II (2) G D, [EEx ia] II C
EC-type examination	PTB 03 ATEX 2094 X
Electrical data	
Signal input	2 channel frequency signal of positive displacement flow sensors in Ex-version
→ Switching points	0 < 9 mA
	1 ≽ 12 mA
→ Open circuit voltage	10 V
→ Short circuit current	82 mA
Signal output	2 channel, open collector
Power supply	24 V AC/DC (±20 %)
Power consumption DC	3.6 W
Mode selection	2x switch
Displays	6x LED, each Channel power indication, switch status and wire monitoring
Order code	
	K-130-ATEX

Oval gear flow meters

Principle of operation

Oval gear meters are displacement-type volume meters that transport defined incremental volumes in individual measuring chambers. The measuring element consists of two high precision toothed oval gears, which are driven by the flow of the medium and mesh with each other. In this way, a defined volume is transported for each rotation of the pair of oval gears. The number of rotations is a measure of the amount of fluid that has passed through the meter. The rotations are detected by a sensor element.

Advantages

- Positive displacement meter for volumetric flow rate or total flow measurement
- Applicable for fluids such as lubrication oils, mineral oils, hydraulic oils, fuels, liquified gases and others
- No inlet or outlet section required
- High-quality construction for long service life and high reliability
- Long-term stability
- High measurement accuracy and repeatability
- Easy installation

Oval gear flow meters

Series VO, Sensor

Characteristics

- Sensor with pulse output signal, no local display
- Flow rate or total flow indication by local or remote display
- Individual calibration
- Various versions of local displays are available: battery powered (lifetime approx. 3 years) or externally powered version with analogue and pulse output
- Female threaded or flanged process connection
- O-ring material FKM, EPDM or FEP

Туре	V0015	V006	V01	V02	V05	V010	V050	V0115
Measuring range [l/min]								
→ Oval gears st. steel (V0VA)	0.031	0.25	0.410	130	250	4100	15300	35660
→ Oval gears PEEK (V0VP / AP)	0.031	0.27	0.414	130	260	3120		
Process connection								
→ Thread	G1/4	G1/2	G1/2	G3/4	G 1	G 1	G 2	G 2
→ Flange (according to DIN EN 1092-1)				DN 15		DN 25	DN 50	DN 50
Nominal puls rate [1/l]	3100	333	166	100	40	20	4	1.7

Туре	VOVA	V0VP**	V0AP**
Accuracy*	±0.5 % of reading		
Repeatability*	< 0.05 %		
Pressure rating	PN 40 (PN 25 with FEP 0-ring)		
Temperature range			
Standard	-1070 °C		
High temperature sensor	-10130 °C		
Materials***			
Housing	Stainless steel	Stainless steel	Aluminium
Oval gears	Stainless steel	PEEK	PEEK
0-ring	FKM (standard) or EPDM (option) or FEP (option)	FKM (standard) or EPDM (option) or FEP (option)	FKM (standard) or EPDM (option) or FEP (option)
Medium			
Allowable Viscosity	0.3350 mPa s	0.350 mPa s	
Max. particle size	25100 µm		
Electrical data			
Supply voltage → Standard → High temperature sensor	1030 VDC 1830 VDC	1030 VDC	1030 VDC
Electrical connection (Sensor without display)	M12 x 1 connector		
Signal output			
Standard High temperature sensor	NPN, PNP PNP	NPN, PNP	NPN, PNP
Degree of protection EN 60529	IP67		

^{*} Test conditions:

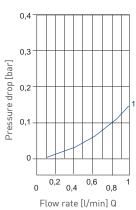
→ Viscosity >3 mPa s

→ Media temperature 20 °C

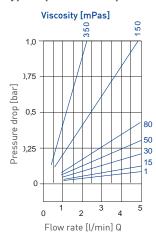
** Not availiable for V050 and V0115

*** Other material combinations on request

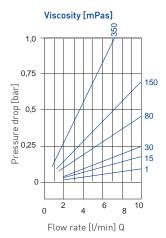
Series VO, Display


General description - displays

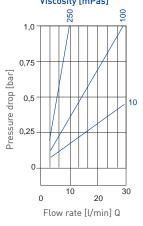
- Choice of three display models
- Actual flow rate indication
- Total flow indication, password protected counter
- Mass indication (temperature-dependent)
- Up to two VO sensors can be connected; configurable for differential measurement (Display 2 and 3)
- Impulse output (Display 2 and 3)
- Optionally available for wall mounting with bracket (for media temperatures up to 70 °C)


Туре	Display 1	Display 2	Display 3
Display	8 digit		
Electrical data			
Power supply	Battery	Battery	1030 VDC
Power consumption			100 mA, 28 V
Signal outputs		Pulse output NPN open collector	Pulse output NPN open collector Analogue output 420 mA / 2-wire
Degree of protection EN 60529	IP65		
Electrical connection		Terminal block / cable gla	and
Cable length (remote type / wall mounting)		2000 mm	
Temperature range			
Medium temperature	-1070 °C		
Ambient temperature	-2070 °C		
Storage temperature	1055 °C		
Туре			
Local (meter mounted)	✓	✓	✓
Remote (wall mounting)		✓	✓

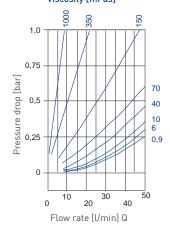
Typical pressure drop V0015



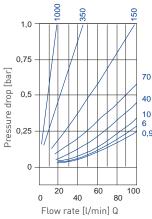
Typical pressure drop V006



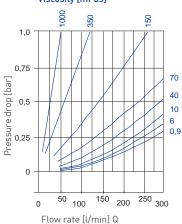
Typical pressure drop VO1


Typical pressure drop VO2

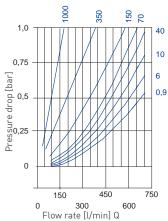
Viscosity [mPas]


Typical pressure drop VO5

Viscosity [mPas]

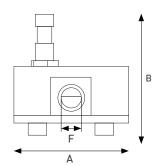

Typical pressure drop VO10

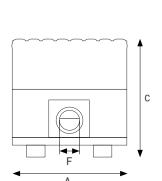
Viscosity [mPas]

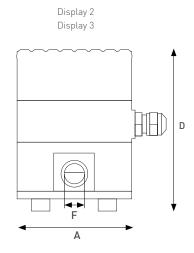

Typical pressure drop VO50

Viscosity [mPas]

Typical pressure drop V0115

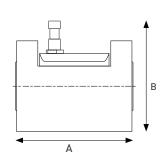

Viscosity [mPas]

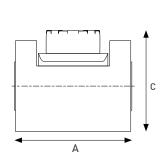



Process connection threaded

No display

Display 1

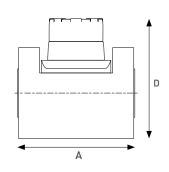



Size	V0015	V006	V01	V02	V05	V010	V050	V0115
A [mm]	78	78	78	99	112	112	220	260
C [mm]	70	75	85	93	98	125	187	245
B _{max} *, D [mm]	96	101	111	120	125	152	213	271
Installation [mm]	73	73	73	90	102	102	184	196
F / Process connection	G1/4	G1/2	G1/2	G ³ / ₄	G 1	G 1	G 2	G 2

^{*} Depends on sensor

Process connection flanged

No display

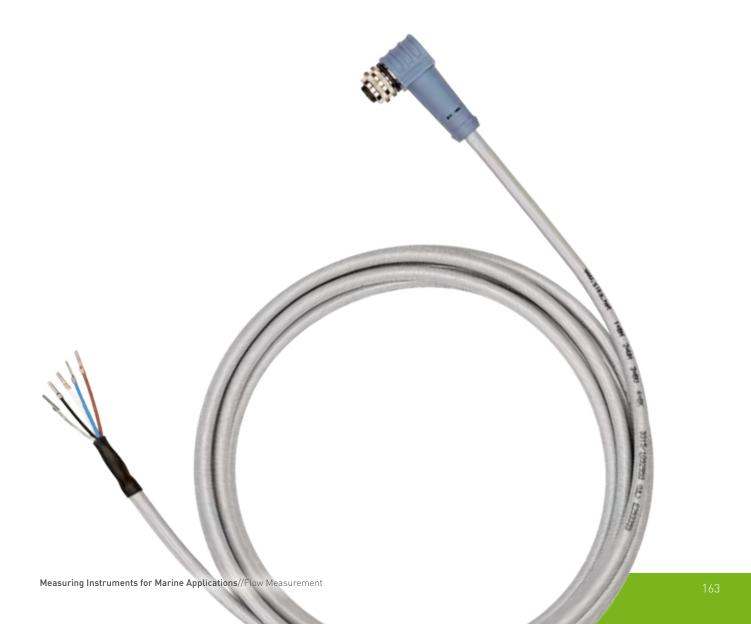


Display 1

		1		
Size	V0 2	VO 10	VO 50	VO 115
A / Installation [mm]	140	170	184	196
C [mm]	108	153	165	243
B _{max} *, D [mm]	135	180	192	270
E [mm]	95	130	220	260
F / Process connection	DN 15	DN 25	DN 50	DN 50

^{*} Depends on sensor

Display 2 Display 3


Display of the process connection 1	Order code		Example → VO 01	VA	Р	N	I1K
	Туре						
11K	Oval gear meters, ser	ies VO	VO				
1	Size	Process connection					
1	015	G¼ female	01				I1K
2	06	G½ female	06				I3K
55	1	G½ female	1A				I3K
10	2	G¾ female	2A				14K
BK 115 G 2 female	5	G 1 female	5A				I5K
115	10	G 1 female	10				I5K
2	50	G 2 female	50	[VA]*			18K
10	115	G 2 female	11	[VA]*			18K
F8K	2	DN 15 flange according to DIN EN 1092-1	2A				F3K
115	10		10				F5K
Materials Body Oval gears Stainless steel Stainless steel VA Stainless steel PEEK VP Aluminium PEEK AP O-rings FKM (standard) V EPDM E FEP P Sensor pulse output without display NPN PNP PNP (high temperature) H Sensor with display Display 1 Battery powered, local display and pulse output Battery powered, local display and pulse output Battery powered, remote display and pulse output Battery powered, remote display and pulse output Bisplay 3 Local Display, pulse and analogue output (420 mA) T	50	DN 50 flange according to DIN EN 1092-1	50	[VA]*			F8K
Body Oval gears Stainless steel Stainless steel VA Stainless steel PEK VP Aluminium PEEK AP O-rings FKM (standard) V EPDM E FEP P Sensor pulse output without display NPN PNP PNP PNP PNP (high temperature) H Sensor with display Display 1 Battery powered, local display and pulse output Battery powered, remote display and pulse output without display and pulse output (420 mA) Display 3 Local Display, pulse and analogue output (420 mA) T AP VA VA VA VA VA VA VA VA VA	115	DN 50 flange according to DIN EN 1092-1	11	[VA]*			F8K
Stainless steel Stainless steel PEEK VP Aluminium PEEK AP VP Aluminium PEEK AP VP Aluminium PEEK AP VP AP AP VP AP AP VP AP AP	Materials						
Stainless steel PEK VP Aluminium PEEK AP Orrings FKM (standard) V EPDM E FEP P Sensor pulse output without display NPN NPN NPN PNP PNP NPN NPN NPN NPN NP	Body	Oval gears					
Aluminium PEEK AP O-rings FKM (standard) V EPDM E FEP P Sensor pulse output without display NPN NPN NPN NPN PNP PNP (high temperature) H Sensor with display Display 1 Battery powered, local display and pulse output Battery powered, local display and pulse output Battery powered, remote display and pulse output	Stainless steel	Stainless steel		VA			
FKM (standard) V EPDM E FEP P Sensor pulse output without display NPN NPN PNP PNP (high temperature) H Sensor with display Display 1 Battery powered, local display and pulse output Battery powered, local display and pulse output Battery powered, remote display and pulse output C Battery powered, remote display and pulse output Battery powered, remote display and pulse output C Battery powered, remote display and pulse output C Battery powered, remote display and pulse output T	Stainless steel	PEEK		VP			
FKM (standard) EPDM EPDM EPDM ERDM FEP Sensor pulse output without display NPN NPN PNP PNP (high temperature) Perpowered, local display Display 1 Battery powered, local display Display 2 Battery powered, local display and pulse output Battery powered, remote display and pulse output Display 3 Local Display, pulse and analogue output (420 mA) T	Aluminium	PEEK		AP			
EPDM FEP Sensor pulse output without display NPN PNP PNP PNP (high temperature) Sensor with display Display 1 Battery powered, local display Display 2 Battery powered, local display and pulse output Battery powered, remote display and pulse output Display 3 Local Display, pulse and analogue output (420 mA) E R N P P P P P C R R R R R R R R R R R R R	0-rings						
FEP Pulse output without display NPN NPN PNP PNP (high temperature) H Sensor with display Display 1 Battery powered, local display D Display 2 Battery powered, local display and pulse output C Battery powered, remote display and pulse output B Display 3 Local Display, pulse and analogue output (420 mA)	FKM (standard)				\vee		
Sensor pulse output without display NPN PNP PNP (high temperature) Sensor with display Display 1 Battery powered, local display Display 2 Battery powered, local display and pulse output Battery powered, remote display and pulse output Battery powered, remote display and pulse output Display 3 Local Display, pulse and analogue output (420 mA) T					Ε		
NPN PNP PNP (high temperature) PP PNP (high temperature) PNP PNP PNP PNP PNP PNP PNP PNP PNP PN	FEP				Р		
PNP (high temperature) Sensor with display Display 1 Battery powered, local display Display 2 Battery powered, local display and pulse output Battery powered, remote display and pulse output Battery powered, remote display and pulse output Display 3 Local Display, pulse and analogue output (420 mA)	Sensor pulse output v	vithout display					
PNP (high temperature) Sensor with display Display 1 Battery powered, local display Display 2 Battery powered, local display and pulse output Battery powered, remote display and pulse output Display 3 Local Display, pulse and analogue output (420 mA)	NPN					Ν	
Display 1 Battery powered, local display Display 2 Battery powered, local display and pulse output Battery powered, remote display and pulse output Battery powered, remote display and pulse output Battery powered, remote display and pulse output B Display 3 Local Display, pulse and analogue output (420 mA)	PNP					Р	
Display 1 Battery powered, local display Display 2 Battery powered, local display and pulse output Battery powered, remote display and pulse output Battery powered, remote display and pulse output Battery powered, remote display and pulse output Display 3 Local Display, pulse and analogue output (420 mA) T	PNP (high temperatur	re)				Н	
Battery powered, local display Display 2 Battery powered, local display and pulse output C Battery powered, remote display and pulse output B Display 3 Local Display, pulse and analogue output (420 mA)	Sensor with display						
Display 2 Battery powered, local display and pulse output C Battery powered, remote display and pulse output B Display 3 Local Display, pulse and analogue output (420 mA) T	Display 1						
Battery powered, local display and pulse output Battery powered, remote display and pulse output B Display 3 Local Display, pulse and analogue output (420 mA) T	Battery powered, loca	l display				D	
Battery powered, local display and pulse output Battery powered, remote display and pulse output B Display 3 Local Display, pulse and analogue output (420 mA) T							
Battery powered, remote display and pulse output Display 3 Local Display, pulse and analogue output (420 mA) T							
Display 3 Local Display, pulse and analogue output (420 mA) T	- •	· · · · · · · · · · · · · · · · · · ·					
Local Display, pulse and analogue output (420 mA)	Battery powered, rem	ote display and pulse output				В	
Local Display, pulse and analogue output (420 mA)	Display 3						
		nd analogue output [4 20 mΔ]				Т	
						A	

^{*} Preset

Accessories

Accessories	Length	Order code	
Connection cable with 4-pin cable socket M12 x 1,	3 m	XVT2053	
angle type molded lead, sheathing material PUR,	5 m	XVT2009	
shielded, (T _{max} = 80 °C) - UL-approval	10 m	XVT2070	
4 pin cable socket M12x1 angle type, unassembled		VT1331	*
3.6 V lithium battery for Display 1 and Display 2		V01036	

